
The Zeeman effect for the 'anistropic hydrogen atom' in the complex WKB approximation: I.

Quantization of closed orbits for the Pauli operator with spin-orbit interaction

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 5799

(http://iopscience.iop.org/0305-4470/28/20/013)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 00:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/20
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
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orbits for the Pauli operator with spin-orbit interaction 
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B Vurovsky 3/12, 109028, Moscow, Russia 
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Abstract. Using the complex WKB method, new semiclassical spectral series for perturbed 
states of an ‘anisotropic‘ hydrogen atom faking into account the electron’s spin polarization 
in a homogeneous magnetic field (the anomalous &man effect) are constructed. They are 
valid uniformly for all values of the field‘s magnitude. These series correspond to families 
(stable in the linear approximation) of periodic and conditionally periodic motions of a classical 
electron in the plane orthogonal to the direction of the field. The corresponding semiclassical 
wavefunctions have the property of quantum ‘superscaring’ in the coordinate space n w  these 
classical trajectories of motion. We obtain the limit cases of our semiclassical energy levels for 
strong and weak magnetic fields. We compare them with the only known approximations, i.e. 
for the hydropn atom. 

1. Introduction 

We consider the following spectral problem 

&lk = Elk E L2(R2,y.z) x e’ Q = r(w, Y2) (1) 

fiD = & + &f 

where the quantum Hamiltonian fip has the form 

1 e’ is = - (-ihV - CAY + v,(x, y,  z )  vr = - 
2m C Jx’ + y’ + yz’ 

~ eh eh 
Vs-f = -- (u, H )  - -(a, E x (-ihV - 

2mc 4 m V  C 

Here y > 0 is the parameter of anisotropy of the scalar potential V,(q), q = ( x .  y ,  z), 
A = fH&y,  x .  0) is the vector potential of a homogeneous magnetic field, Cs-f is the 
operator of interaction between the spin and the external field, U = (U, ,  u 2 , q )  are the Pauli 
matrices; eE = -VV,(q) ,  H = V x A. When y = 1 the problem (1H2) is known as the 
anomalous Zeeman effect problem [l]. 

The exact solution of (1)-(2) is known only in two cases: when there is no magnetic 
field and y = 1, i.e. when the operator Gp is the Hamiltonian of the hydrogen atom, and 
when V, = 0, i.e. in a purely homogeneous magnetic field. For the electron without spin 
(Vs-f = 0), y = 1 and & # 0 (1H2) is one of the oldest and most difficult problems of 
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quantum mechanics: the problem of calculating the splitting of atomic energy levels in a 
homogeneous magnetic field (the Z e e m  efecect) [ I ] .  When HO = 0, y f 1, problem (1)-(2) 
is the quantum analogue of the anisotropic Keplerproblem (AKP). This model, which arose 
in solid state theory, became popular in connection with the study of the chaotic behaviour 
of classically non-integrable systems and their quantum analogues (see [2 ] ) .  

For the Zeeman effect, well known approximation methods, such as regular perturbations 
[3-7], the averaging method [SI, or adiabatic approximation 19, IO]  give quite good results, 
either for weak or strong magnetic fields (see, e.g., the surveys [l l-141). For all these 
methods the intermediate domain of magnetic field, Ho - 108-10'o G, is the most difficult 
for analysis because, in this domain, magnetic and Coulomb interactions are of the same 
order. In the general case, when Ho f 0, y # I ,  it is not clear how to use perturbation 
theory. For example, in a weak magnetic field, the quantum unperturbed system (for Ho = 0) 
is also non-integrable. Nevertheless, in this general case we obtain, in this paper, concrete 
information about the spectrum. 

The main result of this first part is the following: we give new quite effective formulae 
for subsequences of asymptotic as h -+ 0 eigenfunctions 'Pn,<(q, h),  ( n ,  { are quantum 
numbers, n = ( n l , n z , n 3 ) ,  ni E Z; i = 1,2,3,  { = &I-the spin of the electron) and 
eigenvalues &,<(i?) of problem ( I )  in the most general case (Ho # 0, y f 1, both of 
arbitrary magnitude and Vs-r # 0). in other words, we construct semiclassical spectral series 
(!P,,{(q,h), En,<@)), related to some special regular types of motion of the corresponding 
non-integrable classical system 

V V Belov et a1 

P = - H  q 4 = %  q = ( x ! Y 7 z )  P = ( P z , P y . P z )  
1 2 

H ( p ,  4) = H d p ,  4) = - (P - PIH, d) - 2/49 + f 2 +  YZZ.  ( 3 )  2m 2c 
The semiclassical approximation we use is based on a new general approach founded on 

Maslov's complex germ theory [15]. This method is called the complex WKB method (129- 
321). The semiclassical approximation ( A  -+ 0) based on the traditional multidimensional 
WKB method ([16-24]) is not applicable. because the associated classical system is non- 
integrable (in the sense of Liouville), and therefore does not possess a family of three- 
dimensional invariant Lagrangian tori. 

Moreover, as has been shown (see surveys [ I l ,  12,25]), in special cases, namely, for 
the AKP (Ho = 0, y # 1) and the Zeeman effect, there exists a region of parameters (energy 
E and projection of the orbital momentum I )  for which the motion of the classical system 

For the AKP, Gutzwiller was the first [26,27] to discover hard chaos in the neighbourhood 
of I = 0 (see 1'21). The hydrogen atom in a magnetic field ( y  = 1) is a real classically non- 
integrable system with soft chaos This fact was considered in several places (see surveys 
[11,25]).  In particular, a detailed classification of regular and irregular types of motion OF 
the electron, in accordance with the value of the integrals E and I ,  is performed, on the 
basis of numerical methods, in [28].  

In the present paper we obtain information about the behaviour of sequences of 
individual eigenfunctions and eigenvalues (spectral series) for problem (1)-(2) under the 
condition 111 # 0 within the frame of  the complex WKB methodt. This method, developed 
in [29-321 is based, as we stated above, on the general complex germ theory [15,29].  
Essentially, it is a simplified construction of the Maslov canonical operator w-ith complex 
phase. This conshuction is adapted to the solution of spectral problems for scalar and matrix 

t For the quantum AKP ( y  = const # I. Hn = 0) and the hydrogen atom in a mametic field the semiclassical 
spectral series were consmcted in [33,341 respectively. 

in phase space is completely chaotic (hard chaos). - 
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(pseudo) differential operators (see [32]) corresponding to both classically integrable and 
non-integrable Hamiltonian systems. 

In the semiclassical approach to spectral problems, one can construct only partial spectral 
series in a certain domain of the energy spectrum, dependent on h (TI + 0). In complex 
germ theory the classification of semiclassical spectral series is based on geometrical objects 
in phase space, generated by solutions of the classical equations of motion. These objects 
are known as isotropic (Lagrangian of less than full dimension) manifolds of dimension 
k ,  0 G k < n, where n is the dimension of the configuration space of the classical system. 
If the motion of the system takes place in a bounded domain, they are isotropic (small- 
dimensional) ton. 

A fundamental difference between quantization of full dimensional ton and tori of less 
than full dimension Ak, k G n, is that the last must be stable in the linear approximation. 
So conditions are imposed on the solutions of the Hamiltonian linear system in variations 
along Ak.  The geomeaic object formed with these complex solutions is called the complex 
germ. It is a vector bundle with a basis on Ak. In particular, when k = 1 and A’ is a 
closed phase curve, the existence of the complex germ is equivalent to the stability of A ]  
in the linear approximation, i.e. the phase curve A’ is of elliptic type. 

For the AKP in a homogeneous magnetic field (non-integrable Hamiltonian system with 
one cycle variable) we construct the semiclassical spectral series corresponding to families 
of isotropic tori of dimension k = 1 (part I) and k = 2 (part n). They are generated by the 
motion of the classical electron in the plane (z = 0) perpendicular to the direction of the 
magnetic field Ho. 

Finally, we note that, in contrast to the real multidimensional WKB method, the phase S 
of the semiclassical germ asymptotics of wavefunctions IYE - exp(W/h)q is complex, and 
Im S > 0. Due to this fact, the functions W&, h) have the following typical property in the 
limit (as fi + 0): they are located in a small (of order fi)  neighbourhood of the domain 
of light 04, where Im S ( x )  = 0. This domain is the projection of the family of phase 
trajectories forming the isotropic tori Ak on the configuration space. The dimension k of 
0,” is less than the dimension n of the configuration space R,”. Having in mind this property 
of semiclassical wavefunctions in spectral problems, we use the term ‘superscar’ near 0,“ 
following the pioneer work [35]. In I351 Heller discovered the ‘scarring’ phenomenon 
for isolated unstable periodic orbits in the stadium potential and introduced the notion of 
‘superscar’ ([351 p 1517) for the wavefunctions corresponding to non-isolated (neutrally 
stable) periodic orbits. The power of the quantum superscaning depends on the geometry 
of the projection 0: and can have singularities with respect to h, h + 0, in the vicinity of 
the focal points and caustics lying in 0: (see the details in [30,32] and in part II of this 
work). 

For closed phase curves A’ without focal points, WKB asymptotics with complex phases 
can be constructed by means of Gaussian packets (or squeezed states) 

Here t is the ‘intrinsic time’ along the trajectory A’ = ( x .  p : x = xcl(t), p = p&), 
Re D ( t )  > 0, and the amplitude C(t)  has no singularities. 

This ansatz was proposed in [36,37] for the case of closed geodesics. The construction 
of localized states in the vicinity of closed phase curves i s  also discussed in [3&41]. In 
the general case for isotropic tori Ak. k 2 1, with focal points, the localized states ansatz 
generalizing (*) was proposed in [30]. 
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From the point of view of obtaining specific numerical results from our formulae for 
scalar Hamiltonians, our method reduces the computation of the perturbed energy level 
spectrum, in the entire range of the magnetic field, to the investigation of two systems 
of differential equations: the Hamiltonian system and its system in variations. (We find 
particular solutions that generate isotropic tori with projections onto lying in the plane 
z = 0). In this part of the work we consider a special family A'(I) of closed phase 
trajectories, namely circles, being stationary motions or the relative equilibria. For the 
family AI({) we must solve one algebraic equation of the fourth degree with respect to 
the equilibrium radius R o ( l ) ,  and the equations in variations are reduced to a system with 
constant coefficients?. To apply the complex WKB method to spectral problems with matrix 
Hamiltonians such as (1x2). we have to integrate a third system of differential equations 
for the spin correction (the polarization equation). In [42,43] families of closed orbits 
and two-dimensional Lagrangian (isotropic) tori for the system of Dirac equations were 
quantized by this method. Also in those papers, the polarization equation for the spin of 
a relativistic electron is deduced. In the (non-relativistic) problem we consider here, the 
equation of polarization is a limit of the polarization equation from [42,43] with respect to 
the relativity parameter u/c,  with U the speed of the electron. In particular, for A ' ( E )  this 
equation is reduced to a system of two linear ordinary differential equations with constant 
coefficients. 

It is essential to note that our formulae for the semiclassical spectral series are valid 
for all values of the magnetic field, including those from the intermediate domain and for 
all values of parameter y .  We obtain formulae for the semiclassical energy levels and 
wavefunctions for problem (1)-(2), simple enough for its analysis, in the two limit cases 
of weak (Ho + 0) and strong (Ho + CO) magnetic fields. This is the second (practical) 
result of the present paper. 

The complex WKB method formulae, as well as the formulae of any other method 
of semiclassical (h -P 0) approximation of quantum mechanics, have a non-perturbative 
character with respect to other classical parameters within the systems; in our case 
with respect to the parameters HO and y .  Consequently, if in a neighbourhood of any 
characteristic value of such parameters there is no bifurcation in the classical equations 
(Newton equation, equations in variations and the electron's spin polarization equation) that 
define the semiclassical asymptotics of problem (1)-(2)$, then the semiclassical formulae 
for the spectrum and wavefunctions will regularly (smoothly) depend on these classical 
parameters. 

The structure of the paper is as follows. In section 2 we give a rigorous statement of the 
problem. In sections 3-5 we quantize the family of closed phase curves A'(1) and give the 
results of calcuiation. In sections 6 and 7 we study the behaviour of the semiclassical energy 
levels in the limit cases of weak and strong magnetic fields. In section 8 a comparison is 
given between these limit cases of OUT formulae for y = 1 and previously known results. 

2. General statement of the problem 

The complex WKB method allows us to associate the semiclassical spectral series 
(Em,<, an.{) of the quantum matrix problem ( l ) ,  with families of invariant (orbitally stable) 

t Thc more complicated case of two-dimensional isolropic tori A' requires some auxiliary consrrUdons and will 
be mnsidered in pM II of this work. 

In particular A '  lies beyond a neighbourhood of sepmbices (independenl of h). and the syslem in variations is 
strongly stable io lhe sense of lhe Gelfand-Krein-Lidskii lheory I441 (all the eigenvalues ofthe reduced monodmmy 
m3lrix i~ different and lie on the unit circle). 
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isotropic tori Ak(w),  0 < k < 3, of the corresponding classical system. In the case under 
consideration this classical system is 

P = -VqH?(p, 9) d = V p H > ( p ,  9) 

( P = ( P r . P y . P r )  ER;q=(X,Y,Z)ER;) (4) 

with the Hamiltonian 

A rigorous statement of the problem; for problem (1) we construct semiclassical series 
for the spectrum and for the asymptotic eigenfunctions, i.e. spectral series; this means the 
following. Let E = EC' be a fixed value of the spectral parameter E ,  and suppose that 
the energy level MEEl of the Hamiltonian function (5 )  corresponding to the operator &, 
ME'I = ( (p ,  q), H,(p, q )  = E"], contains a k-dimensional isotropic torus Ak(Ec') invariant 
with respect to phase flow gk : Ak(Eo) = gLAk(Eo, t E RI. ?his means that the entire 
trajectory 

Irt(p0,qCJ = (p  = P O ,  PO, qo), 4 = q(t3 PO. qo)) t E R' (PO, 40) E "; x RiI 

of the Hamiltonian system (4). starting from an arbitrary point ro = (po,qo) on h k ( E c ' ) ,  
lies on Ak(Ec' ) ,  i.e., r,(po. qo)  = gk(r0)  E Ak(Ec'), f E RI. In other words, the phase flow 
gk leaves the invariant torus Ak(Ec' )  in its place, and shifts the points of the phase space 
&$ x Ri that lie on A~(E") along the trajectories of (4). 

A sequence of values En,,. = E,,[(h), where the number n = (n],n2, n3). in general, 
can depend on h(c = il), and a sequence of functions i J ! ~ ~ , ~ ~ ) ( q , h )  E Lz(R;) x C2, 
f i  E (0, I ]  are called semiclassical spectral series for problem (l)-(2), corresponding to the 
k-dimensional isotropic torus Ak(Ec') as h + 0, if the following conditions hold. 

(i) E,,,.@) -+ EC' as h + 0 (correspondence of the semiclassical spectral series En,,.@) 
to classical motlon 011 the level EC'); 

(ii) Q?~.,~fi ,(q,h) = 0(1) for almost allt q E D:(EE') and @ ~ . , ~ g ) ( q , h )  = O(hoo) 
for q $ D,k(E") where D:(EC') is the projection of Ar(EC1)  on the configuration space Ri 
(correspondence of the semiclassical series for the (asymptotic) eigenfunctions i J !~~ , ,m) (q .  f i )  
to the isotropic torus Ak(Ec'));  

(iii) II(A - E , , , @ ) ) i J ! E " , c n , ( q , f i ) ~ l L , ~ ~ ) ~ @ r  = 0 ( h 3 9  as f i  + o (formal asymptotics 
condition). 

In broad outlines, for problem (1) the orbital (q = (x, y ,  2 ) )  and spin (5 = rtl) variables 
can be separated up to O(h2) in the semiclassical approximation (fi 4 0). Namely, the 
semiclassical spectral series of the initial spectral problem has the following structure outside 
neighbourhoods of focal points: 

~ ' . , 5 ( 4 . h ) = \ Y " ( q , f i ) f i ( q )  E n , < ( f i ) = E n @ ) + h f i t  +O(h2) .  (6)  
Here (En@), Ym(q,h) )  is the semiclassical spectral series of the scalar Schrddinger 

operator &: 
&'J'yE(q+fi) = E q E ( q , f i )  v E ( S , h )  E L z @ 9  (7) 

1 e 2 e2 Fi, = - (-wv - - [ H , q l )  - q = ( X , y , z )  (8) 
2m 2c Jx' + y z  + yz2 

t Except for focal points or paints lying on caustics. AI such points the solution is singular in h as h + 0 (for 
details, see [31,32]). 
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( E  is the spectral parameter), and pI, f c  (q) are a solution of the spectral problem for the 
polarization equation on A‘: 

V V BeIov et a! 

d 
-i;fZ + n l n k f t  =ficfq fz : A k  + C2 

where the polarization matrix Il has the form 

(9) 

and d/dt means differentiation along the trajectories of system (4). 

Remark. The correction fit, = k1 to the spectrum of the scalar particle is analogous to 
the Berry phase correction [46]. In contrast to the scalar problem (7), the spectral problem 
(9) on the invariant torus A’ has a smooth solution for the spin contribution fq of the 
wavefunction, in particular in the vicinity of the focal points (in the orbital variables), 
where branching of the scalar part h)  of the semiclassical wavefunction an,( (q, h)  
OCCUTS. 

3. Semiclassical spectral series of the Schrodinger operator 

Here we construct semiclassical spectral series for the spectral problem (7H8). In section 4 
we will find the solution for the spectral problem for the polarization (9). With these two 
results we write down in section 5 the general semiclassical formulae. Since operator & is 
invariant with respect to the rotation about the axis 01, parallel to the field H = (0,O. Ho), 
the classical system possesses a motion integral p,-the projection of the orbital momentum 
on the axis Oz. Let us pass to cylindrical coordinates p .  z ,  p The classical Hamiltonian 
for operator (8) is 

where the variables pp. pi and p+, are canonically conjugate to the variables p ,  Z, p(mod2z), 
p = (pp,  p:), O H  = eoHo/mc is the cyclotron frequency, e = -eo, eo > 0, is the charge 
and m is the mass of the electron. 

In a Hamiltonian system with a cyclic (angular) variable one can always single out 
a special family of closed trajectories-circles, which are stationary motions or relative 
equilibrium states of the system in reduced phase space (cf [45]). For each value I E W‘ 
of the ‘momentum’ integral (pv = I ) ,  the curve 

A ’ U )  = {pp = 0, pz = 0, p9 = I ,  P = R O W ,  z = 0, ‘p = o o ( I ) t  + cpo.f E W} (12) 
is a closed trajectory of the Hamiltonian system (4x5) .  It lies on the energy level E = u(I)  
of the function H,(p, I ,  q) given by (1 1). 

The frequency of rotation is 

~ ( 1 )  = aH/app(O, 0, I ,  R o U ) ,  0) =  OH/^+ I / ( m R i ( O ) .  (14) 
Here KO([) is a critical point of the ‘effective’ potential 
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in the plane z = 0. Thus Ro(l) is a solution of the equation 

(* Ro = Ro(1)). (16) 

The frequencies wl(I) of radial and ~ ( 1 )  of axial oscillations of the Hamiltonian system 
linearized in a neighbourhood of the equilibrium point p p  = pT = 0, p = Ro(l), z = 0 in 
reduced phase space R: x Et: ( p  = (pp.  p r )  and q = (p ,  2)) can be easily calculated 

m 2 2  wHRo/4  4 + eEmRo = I 2 

Following (341 the quantization condition for the family A' ( l )  becomes 

(18) 

The topological characteristics j3j(l), j = 1,2 of the complex germ r 3 ( A 1 ( I ) )  are related 
to the frequencies of rotation wo(I) and of radial and axial oscillations by the following 
relation (see [31,32]) 

Pj(1)lzir = w , ( W J o ( I )  j = 1 ,2 .  

Notice that for th is  approximation the orbital quantum number 1 = l @ )  is a large parameter, 
111 >> 1. It is connected with the parameter h, h -+ 0 by the condition l@)h -+ IC', where 
the orbital momentum IC' corresponds to the fixed energy EC' of the classical system due 
to relation EC1 = ~ ( 1 " )  (13). 

Condition (18) gives us a discrete sequence of quantized values of the orbital momentum 
I = I l , v , , m @ ) .  Then the semiclassical energy levels that correspond, in the limit as h -+ 0, 
to the family of closed trajectories A'(12) near the classical energy EC' = ~ ( 1 " )  (see 
introduction) are defined by the formula 

Ei,ul.h H A A Y I , , " , , ~ v o  N i . v , . ~ ( h ) ) .  

Using the Taylor series E = Eo + hE' + O(h2) in h -+ 0 and the well known formula 
( l /2n)a/aE&,,( l~ p d q  = wo(I)-' [45] it is not difficult to show that the upper formula for 

is equivalent (up to O@'), h + 0) to the formula for the spectrum in the 'oscillator 
approximation' : 

E = Ei,ur,h(h) = E?)@) +hE/,:,,,(h) +O@'). (19) 

Ep)(h) is the energy of the electron on the equilibrium orbit, quantized by (18): 

and hE&!,,h(h) is the energy of small oscillations with frequencies w j ( l ) ,  j = 1,2 ((17) 
with I = Zh) near the equilibrium point p = Ro(I ) ,  z = 0, 
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The corresponding semiclassical orthonormal eigenfunctions are (cf [31,32]): 

Here H,,, are the Hermite polynomials and I(h)h + IC' (as h -+ O), where Ec' = "(lei) is 
the given energy level of the classical system. 

4. The polarization equation (spin correction) 

The matrix of polarization (10) for the family A'( I )  is a matrix with constant coefficients. 
Using expressions (12), (14) and (16) we obtain 

where a3 is the Pauli matrix, Since the differentiation operator along the trajectoly Ai(I)  
is d/dtlAj(,, = %(f)a/ap, the spectral problem (9) takes the form 

1 0  
f < ( P + W = f i ( P )  u 3 = ( 0  - 1 ) .  

Obviously, its solution is given by the following formula: 

f,(rp, I) = eikpu, F = ktl v + ~  = '(1,o) u-1 = ' (0 ,  I )  

5. Semiclassical spectral series of the Pauli operator with spin-orbit interaction 

Without loss of generality (see below) we can assume k = 0. The series of semiclassical 
eigenvalues of the original problem (1H2) is given by 

l=0,*1 ,&2 ,... w{=o,1 .2  *. . .  < = f l .  (26) 
The sequence of semiclassical eigenfunctions q(,Y,,h.t (p, (0, z) corresponding to El,v,,h,t (8) 
(according to (6)) has the following form: 

*l.vi.h,t(P*P,Z,h) ="t*Et..,.,k?>h) (27) 
(see WE,,",,*@, h )  in (22) and vt in (25)). The case k # 0 implies only a renumeration of the 
energy levels (26) with respect to the orbital quantum number 1: Ej.vl.Y,t@) H E I , . ~ ~ . ~ . c ( ~ ) ,  
I' = 1 + k. Actually, by the definition of rotation frequency: % ( I )  = aH/aIl,,r(,, = 
a E c ~ ( l ) / a I ,  the spin correction h ~ ( l ) l , , &  k # 0 to formula (26) means that the equality 

Et+k,vt,q,<(h) + O@') & , v , , w , < ( f t )  + h%([fi)k 
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holds up to O(h2!!. The corresponding renumeration 1 H 1 + k in the wavefunctions (27) 
infiuences the term eilV H e'('+"+' only. It does not affect the final result up to O@),  
because, for 1 >i k ,  exp[i(l + k ) ~ ]  - exp(i@). 

ti. Semiclassical spectral series in the weak magnetic field approximation 

6.1. The Schrodinger operator 

Let us choose the ratio ( ~ B / c ~ H ) ~  = E ,  as a criterion of smallness of magnetic fields, where 
as = (ch/eoHo)'/2, as = h2/me$ The parameter E, = H&h3/~m2e:)2 is efficiently 
small up to values of the magnetic field HO of order lo3 G. For this case let us find the 
approximate value for the solution & ( I )  of equation (16) as E,,, + 0, considering I = lh, 
I # 0. The actual parameter q, of the expansion is 

We have 
m 

Ro(1 = lh) = asI2 cr ,?qA.  
j=O 

In particular, r; = 1, r,"' = -4, r? = i. After substituting (28) into (13), (17) and (19) 
we obtain the semiclassical energy levels for the electron's motion along the closed phase 
curves A'([) (12) in the weak magnetic field approximation HO 3 0, in the form of the 
following expansion in power series of q,: 

00 is the classical frequency of the electron's motion in a Coulomb field: oo = me$/@. 
The first four coefficients of expansion (29) look as follows: 

G = -1 + (IJI + +)/PI + f i ( U 2  + $)/Ill 
C" I - - H I + 3 f i ( v 2 +  f)/Slll+ 7(V1 + ',)/8UI 

cy = -A - 33&(!Jz + $)/128111 - 73(vl + $)/128111 

Cy = & + 324fi(Vz + 4)/1024111+ 735(~1 + ~)/102411[. (30) 

When E ,  = 0 and y = 1, assuming n = Ill + VI + uz + 1 (n is the main quantum number 
[ID, we get the exact spectrum of the electron in a hydrogen atom up to O(h2). 

6.2. The spin correction 

Substituting the radius expausion (28) and (25) we get the following formula for the spin 
correction 
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7. Semiclassical spectral series in the strung magnetic field approximation 

7.1. The Schrijdinger operator 

Let us consider the magnetic field to be so strong that the Larmour radius a H  = (cTi/eoHo)'/2 
is much less than the Bohr electron radius as = A2/me: [l]. Condition ax < as is 
efficiently executed for values of the field starting with HO - 4.7 x IO9 G. The actual 
dimensionless parameter of this expansion (as 1 # 0) is: 

V V Belov et ul 

qs = &~(2111)-~/~ = (2111)-3/2a~/a~ = [ ~ m ~ e ~ / ( 8 1 1 1 ~ H o h ' ) ] ' / ~  < 1. 

From (16) the solution Ro(I), determining the equilibrium radius of the electron orbit in 
the plane z = 0, can be expanded in the following way: 

m 
Ro(I = lh) =a ,JZ iTxr ,?q i .  

j=O 

The first five coefficients are r i  = 1, rf = - I ,  r l  = -4, rs  = -;, r j  = i. After 
substituting (32) into (13). (17) and (19). the semiclassical energy levels, corresponding to 
the electron's motion along the closed phase curves A ' ( I )  (12) in the strong magnetic field 
(Ho 4 CO) approximation, are obtained in the form of the following expansion: 

The first six coefficients of this expansion are: 

C ? ( U ~ ,  ~ 2 . 1 )  = cj(u1, I J ~ , ~ ) ( ~ I I I ) - ~ ~ / ~  

CO = VI 4- (1 + Ill)/2 + f 
c, = -2111 + ( V I  + f)/Z 
c4 = -14 -t ll(Vl + $)/8 

j = 0, I ,  .. ., 5 

CI = Ji;(v2 + ;I 
~3 = 3Ji;(v~ + 9 / 2  

cs = 2 1 f i ( V 2  + ;)/8, 

(34) 

If we identify the sum of the spectral quantum numbers V I  +(I -t 111)/2 with the number 
N of a rather high ( N  >> 1) Landau level [l] then, for y = 1, formula (33) gives us the 
exact spectrum of a non-relativistic electron in a homogeneous magnetic field for ES = 0. 

7.2. The spin correction 

As in the previous section, using (32) and (25) we obtain the spin correction Ef in the form 
of the following expression: 

8. Discussion of the results 

Our formulae for the semiclassical spectral series of the Schrodinger operator for A'([) 
when HO = 0, y # 1 pass into the corresponding spectral series for the quantum AKP 
[33]. Let us compare the obtained formulae for the semiclassical spectral series of the 
Schr6dinger operator (8). with the results of other papers in the limiting cases of strong and 
weak magnetic fields when y = 1 (Zeeman effect). 
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(i) Strong field ( H o  --t 00). If we use formulae (33) and (34), and take into account 
only the first three expansion coefficients, we obtain for y = 1 

Vl,V2=0,1,2 , . . .  lkil >> 1 ki = (1 + lW/2. (36) 
The quantum numbers uI, u2 = 0, 1 , 2 ,  . . enumerate the modes of radial (along p )  and 
axial (along z) oscillations of the wavepacket Q I , ~ , , ~ ,  in a neighbourhood of the equilibrium 
circle p = &,(I) that Lies in the plane z = 0; 1 is the orbital quantum number. This number 
determines the level of excitation of the hydrogen atom due to the quick rotation of the 
electron in the plane transversal to the field Ho. If we identify the sum of the spectral 
quantum numbers V I  and k, with the number N of a rather high ( N  >> 1) Landau level 
[l], N = V I  + ki, then (36) gives us the exact spectrum of a non-relativistic charge in a 
homogeneous magnetic field for ES = 0. For ES # 0, the spectral series complements the 
results obtained by the adiabatic method in [lo] when 1 =, 0. Nonetheless, it is interesting 
to mention that taking into account the two former expansidn coefficients in (33). for U: = n 
the semiclassical spectrum (36) coincides with the energy spectrum from [IO] up to O ( E ~ ) .  
eS + 0, n = 0,  1,2, . . .; N is the quantum number that appears in the adiabatic method of 
'separation of variables'. 

(ii) Weak field (Ho --t 0). For this case the majority of results obtained by perturbation 
theory methods is related to calculating lowly-perturbed states of hydrogen atoms (see, 
e.g., [5-81 and references therein). To calculate highly-perturbed states considered in the 
semiclassical complex WKB approximation with perturbation theory and its modifications, 
one meets the problem of constructing the oscillation functions in the zero approximation. 
It is especially interesting that the coefficients of the semiclassical spectra expansion (30), 
coincide with the coefficients of the perturbation theory series for energy (cf [6]) up to terms 
of order H," inclusive if they are extrapolated to the domain of large quantum numbers 
N >> 1. N = 1 + 1 is the main quantum number for the extreme components of a Coulomb 
multiplet with zero radial quantum number np = 0, m = *L. Here the coincidence is exact 
in the zero and first orders of the field, and approximate with accuracy up to 2% in the 
terms of order H:, H:, H,". 

For tw = 0, assuming n = ill + V I  + u2 + 1,  n the main quantum number, we obtain 
the exact spectrum of a hydrogen atom from formula (29). 
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