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Abstract. Using the complex wkB method, new semiclassical spectral series for perturbed
states of an ‘anisotropic’ hydrogen atom, taking into account the electron’s spin polarization
in 2 homogeneous magnetic field (the anomalous Zeeman effect) are constructed, They are
valid uniformly for all values of the field’s magnitude. These series correspond to families
{stable in the linear approximation) of periodic and conditionally periodic motions of a classical
electron in the plane orthogonal to the direction of the field. The corresponding semiclassical
wavefunctions have the property of quantum ‘superscaring’ in the coordinate space near these
classical trajectories of motion. We obtain the limit cases of our semiclassical energy levels for
strong and weak magnetic fields. We compare them with the only known approximations, i.e.
for the hydrogen atom.

1. Introduction

We consider the following spectral problem
A% =E% T e LRy x C? T = (0, ¥,) (1)

%,y.2
where the quantum Hamiltonian P}P has the form

I'}p = ﬁs - ﬁs-f
2

. 1/ . e \? :
Hs=-2;(“ﬁv*;*4) G N A~ e sre=
AL (o, H) e (o' E X( v eA)) @
s—f = Zmc ! Amc2 ! c '

Here ¥ > O is the parameter of anisotropy of the scalar potential V,(g), ¢ = {x.v,z),
A= %Hg(—y,x. 0) is the vector potential of a homogenecus magnetic field, Vit is the
operator of interaction between the spin and the external field, & = (¢, 02, o3} are the Pauli
matrices; eE = —VV,(g), H =V x A. When y == 1 the problem (1)}~2) is known as the
anomalous Zeeman effect problem [1].

The exact solution of {1)<(2) is known only in two cases: when there is no magnetic
field and y = 1, i.e. when the operator ﬁp is the Hamiltonian of the hydrogen atom, and
when V¥, = 0, i.e. in a purely homogeneous magnetic field. For the electron without spin
{(Voug = 0), ¥y = 1 and Hy # 0 (1)42) is one of the oldest and most difficult problems of

0305-4470/95/205799+12%19.50  © 1995 [OP Publishing Ltd 5799



5800 V V Belov et al

quanturn mechanics: the problem of calculating the splitting of atomic energy levels in a
homogeneous magnetic field (the Zeeman effect) [1]. When Hy = 0, y # 1, problem (1)-(2)
is the quantum analogue of the anisotropic Kepler problem (aXP). This model, which arose
in solid state theory, became popular in connection with the study of the chaotic behaviour
of classically non-integrable systems and their quantum analogues (see [2]).

For the Zeeman effect, well known approximation methods, such as regular perturbations
[3-7], the averaging method [8), or adiabatic approximation [9, 10] give quite good results,
either for weak or strong magnetic fields (see, e.g., the surveys [11-14]). For all these
methods the intermediate domain of magnetic field, Ho ~ 108-10'% G, is the most difficult
for analysis because, in this domain, magnetic and Coulomb interactions are of the same
order. In the general case, when Hp % 0, ¥ % 1, it is not clear how to use perturbation
theory. For example, in a weak magnetic field, the quantum unperturbed system (for Hy = 0)
is also non-integrable. Nevertheless, in this general case we obtain, in this paper, concrete
information about the spectrum.

The main result of this first part is the following: we give new quite effective formulae
for subsequences of asymptotic as # — 0 eigenfunctions ¥, (g, %), (7, ¢ are quantum
numbers, n = (ny,n2, 03}, 1 € & i = 1,2,3, { = L1—the spin of the electron) and
eigenvalues E, ; () of problem (1) in the most general case (Hg # 0, y # 1, both of
arbitrary magnitude and V;_r # 0), in other words, we construct semiclassical spectral series
(W, (g, n), E,; (R)), related to some special regular types of motion of the corresponding
non-integrable classical system

p=—H g="H, g={xy2 P = (Px, Py. P2)
1 e 2
H{p.q)=H(p, q)}= T (p— EEIH’ q}) vez/\/x2+ y24+ 2, (3)

The semiclassical approximation we use is based on a new general approach founded on
Maslov's complex germ theory [15]. This method is called the complex WkB method (129-
32]). The semiclassical approximation (B — 0) based on the traditional multidimensional
wKB method ([16-24]) is not applicable, because the associated classical system is non-
integrable (in the sense of Liouville), and therefore does not possess a family of three-
dimensional invariant Lagrangian tori.

Moreover, as has been shown (see surveys [11,12,25]}, in special cases, namely, for
the AKP {(Hy = 0, ¥ # 1) and the Zeeman effect, there exists a region of parameters (energy
E and projection of the orbital momentum /) for which the motion of the classical system
in phase space is completely chaotic (hard chaos). -

For the AKP, Gutzwiller was the first {26, 27] to discover hard chaos in the neighbourhood
of I = 0 (see [2]). The hydrogen atom in a magnetic field (y = 1) is a real classically non-
integrable system with soft chaos This fact was considered in several places (see surveys
[11,25]). In particular, a detailed classification of regular and irregular types of motion of
the electron, in accordance with the value of the integrals E and [, is performed, on the
basis of numerical methods, in [28].

In the present paper we obtain information about the behaviour of sequences of
individual eigenfunctions and eigenvalues (spectral series) for problem (1)-(2) under the
condition 1| 5 0 within the frame of the complex WKB method{. This method, developed
in [29-32] is based, as we stated above, on the general complex germ theory [15,29].
Essentially, it is a simplified construction of the Maslov canonical operator with complex
phase. This construction is adapted to the solution of spectral problems for scalar and matrix

1 For the quantum AKP (y = const # 1, Hp = ) and the hydrogen atom in a magnetic field the semiclassical
spectral series were constructed in [33, 34] respectively.
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(pseudc) differential operators (see [32]) corresponding to both classically integrable and
non-integrable Hamiltonian systems.

In the semiclassical approach to speciral problems, one can construct only partial spectral
series in a certain domain of the energy spectrum, dependent on 7 (8 — 0). In complex
germ theory the classification of semiclassical spectral series is based on geometrical objects
in phase space, generated by solutions of the classical equations of motion. These objects
are known as isotropic (Lagrangian of less than full dimension) manifolds of dimension
k,0 £k < n, where n is the dimension of the configuration space of the classical system.
If the motion of the system takes place in a bounded domain, they are isotropic (small-
dimensional) tori.

A fundamental difference between quantization of full dimensional tori and tori of less
than full dimension A*, & < n, is that the last must be stable in the linear approximation.
So conditions are imposed on the solutions of the Hamiltonian linear system in variations
along A*. The geometric object formed with these complex solutions is called the complex
germ. It is a vector bundle with a basis on A*. In particular, when & = 1 and A' is a
closed phase curve, the existence of the complex germ is equivalent to the stability of Al
in the linear approximation, i.e. the phase curve A’ is of elliptic type.

For the AKP in a homogeneous magnetic ficld (non-integrable Hamiltonian system with
one cycle variable) we construct the semiclassical speciral series comresponding to families
of isotropic tori of dimension £ = 1 (part I} and &k = 2 (part II). They are generated by the
motion of the classical electron in the plane (z = 0) perpendicular to the direction of the
magnetic field Hp.

Finally, we note that, in contrast to the real multidimensional WKB method, the phase §
of the semiclassical germ asymptotics of wavefunctions Wg ~ exp(iS/f)gp is complex, and
Im § 2 0. Due to this fact, the functions Wg(x, #) have the following typical property in the
limit (as & — 0): they are located in a small (of order /%) neighbourhood of the domain
of light D%, where Im S(x) = 0. This domain is the projection of the family of phase
trajectories forming the isotropic tori A* on the configuration space. The dimension & of
D¥ is less than the dimension » of the configuration space R7. Having in mind this property
of semiclassical wavefunctions in spectral problems, we use the term ‘superscar’ near D¥
following the pioneer work [35]. In [35) Heller discovered the ‘scarring’ phenomenon
for isolated unstable periodic orbits in the stadium potential and introduced the notion of
‘superscar’ ([35] p 1517) for the wavefunctions corresponding to non-isolated (neuotrally
stable) periodic orbits. The power of the quantum superscarring depends on the geometry
of the projection DX and can have singularities with respect to &, & — 0, in the vicinity of
the focal points and caustics lying in D"; (see the details in [30,32] and in part II of this
work).

For closed phase curves A! without focal points, WKB asymptotics with complex phases
can be constructed by means of Gaussian packets (or squeezed states)

. q )
Vg ~ C(f)exp (%Scl(i‘)) exp (—-ZE(DU)(X — X X — xci)) exp (%{Pcl(?)- x— xcl}) ().

Here ¢ is the ‘intrinsic time’ along the trajectory A! = (x, p : x = xq(t), p = palt)),
Re D(#) > 0, and the amplitude C(¢) has no singularities.

This ansatz was proposed in [36,37] for the case of closed geodesics. The construction
of localized states in the vicinify of closed phase curves is aiso discussed in [38—41]. In
the general case for isotropic tori A%, k¥ > 1, with focal points, the localized states ansatz
generalizing (+) was proposed in [30].
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From the point of view of obtaining specific numerical results from our formulae for
scalar Hamiltonians, our method reduces the computation of the perturbed energy level
spectrum, in the entire range of the magnetic field, to the investigation of two systems
of differential equations: the Hamiltonian system and its system in variations. (We find
particular solutions that generate isotropic tori with projections onto R? Iying in the plane
z = 0). In this part of the work we consider a special family A!(7) of closed phase
trajectories, namely circles, being stationary motions or the relative equilibria. For the
family A'(/) we must solve one algebraic equation of the fourth degree with respect to
the equilibrium radius Rg([), and the equations in variations are reduced to a system with
constant coefficientsi. To apply the complex wkB method to spectral problems with matrix
Hamiltonians such as (1)~(2), we have to integrate a third system of differential equations
for the spin correction (the polarization equation). In [42,43] families of closed orbits
and two-dimensional Lagrangian (isotropic) tori for the system of Dirac equations were
quantized by this methed. Also in those papers, the polarization equation for the spin of
a relativistic electron is deduced. In the (non.relativistic) problem we consider here, the
equation of polarization is a Jimit of the polarization equation from [42, 43] with respect to
the relativity parameter v/c, with v the speed of the electron. In particular, for A'(E) this
equation is reduced to a system of two linear ordinary differential equations with constant
coefficients.

It is essential to note that our formulae for the semiclassical spectral series are valid
for all values of the magnetic field, including those from the intermediate domain and for
all values of parameter . We obtain formulae for the semiclassical energy levels and
wavefunctions for problem (1)—{2), simple enpugh for its analysis, in the two limit cases
of weak (Hy — 0) and strong (Hp — co) magnetic fields. This is the second (practical)
result of the present paper.

The complex WKB method formulae, as well as the formulae of any other method
of semiclassical (# — () approximation of quantum mechanics, have a non-perturbative
character with respect to other classical parameters within the systems; in our case
with respect to the parameters Hy and y. Consequently, if in a neighbourhood of any
characteristic value of such parameters there is no bifurcation in the classical equations
(Newton equation, equations in variations and the electron’s spin polarization equation) that
define the semiclassical asymptotics of problem (1)-(2)}, then the semiclassical formulae
for the spectrum and wavefunctions will regularly (smoothly) depend on these classical
parameters.

The structure of the paper is as follows. In section 2 we give a rigorous statement of the
problem. In sections 3-5 we quantize the family of closed phase curves A!(I) and give the
results of calculation. In sections 6 and 7 we study the behaviour of the semiclassical energy
levels in the limit cases of weak and strong magnetic fields. In section 8 a comparison is
given between these limit cases of our formulae for ¥ = 1 and previously known results.

2. General statement of the problem

The complex wWkB method allows us to associate the semiclassical spectral series
(En;, ¥,,y) of the quantum matrix problem (1), with families of invariant (orbitally stable)

t The more complicated case of two-dimensional isotropic tori A? requires some auxiliary constructions and will
be considered in part 11 of this work.

“t In particular A' lies beyond 2 neighbourhood of separatrices (independent of %), and the system in variations is
strongly stable in the sense of the Gelfand-Krein-Lidskii theory [44] (all the eigenvalues of the reduced monodromy
matrix are different and lie on the unit circle),
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isotropic tori A*(w), 0 € & < 3, of the corresponding classical system. In the case under
consideration this classical system is

p=—VqH:(p,q) b= VpH:(p,q)
(p=(px Py p) €R} g = (x,5,0) € R)) )

with the Hamiltonian
H=Hip.q) = 5~ (p— 24} + V(@) )
=Hp)=5-(p—7 ¥ (g)-

A rigorous statement of the problem; for problem (1} we construct semiclassical series
for the spectrum and for the asymptotic eigenfunctions, i.e. spectral series; this means the
following. Let E = E® be a fixed value of the speciral parameter E, and suppose that
the energy level Mga of the Hamiltonian function (5) corresponding to the operator }}5,
Mzga = [{p,q), Hy(p, g) = EY), contains a k-dimensional isotropic torus A*(E®) invariant
with respect to phase flow g%, : A¥(Ep) = g4, A*(Ep, ¢ € R}, This means that the entire
trajectory

{ri(po, q0) = (p = p(t, P0: 90}, 4 = 4(t, o g0)) ¢ € R' (po, g0) € R) x R}

of the Hamiltonian system (4), starting from an arbitrary point 7o = {pe, go) on A4(E),
lies on A*(EY), Le., r,(py, g0) = g}, {ro) € A*(E™), 1 € R!. In other words, the phase flow
g% leaves the invariant torus A*(E®) in its place, and shifts the points of the phase space
R x R? that lie on A*(E*") along the trajectories of (4).

A sequence of values E, ; = E, (k), where the number » = (x;, n2, n3), in general,
can depend on k{({ = =x1), and a sequence of functions g ,g)g,. k) € LZ(RE) x €2,
% € (0, 1] are called semiclassical spectral series for problem (1)-(2), corresponding to the
k-dimensional isotropic torus A*(E<!) as & — 0, if the following conditions hold.

(i) By (B) —> E® as h — O (correspondence of the semiclassical spectral series E, ; ()
to classical motion on the level E°);

(i) ¥z, (g, 1) = O(1) for almost allf g & D;(Ed) and ¥g ag,n) = OA™)
for ¢ & DS(E®') where Df(E®) is the projection of A*(E') on the configuration space R
(correspondence of the semiclassical series for the (asymptotic) eigenfunctions ¥ g, .z (g, %)
to the isotropic torus A*(E))

(i) §(H — En;GNT¥e, (@, Wll.@pxc: = O*?) as o — 0 (formal asymptotics
condition).

In broad outlines, for problem (1) the orbital {(g = (x, y, 2)) and spin (¢ = *1) variables
can be separated up to O(%?) in the semiclassical approximation (¢ —» 0). Namely, the
semiclassical spectral series of the initial spectral problem has the following structure outside
neighbourhoods of focal points:

W, (g, k) = Walg, B) fr () Ep; (R) = En(R) + hug + O(?). (6)

Here (E,(R), ¥.(g.R)) is the semiclassical spectral series of the scalar Schrodinger
operator H;:

HWe(g.h) = EVe(g,h)  Vs(g,h) € Ly(RD) 0!
n 1 , e 2 22
Hs=§';;(—l?lV— EE[H'Q]) *m g=(x,y,2) @&

t Except for focal points or points lying on caustics. At such points the solution is singular in % as & — 0 {for
details, see {31,32]).
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(E is the spectral parameter}, and iy, f;{(g) are a solution of the speciral problem for the
polarization equation on A*:

. d
where the polarization matrix IT has the form
€ 1
M= ~ 5 (a. H(g) - %[E(Q) X pl) 10)

and d/dt means differentiation along the trajectories of system (4).

Remark. The correction gy, ¢ = =1 to the spectrum of the scalar particle is analogous to
the Berry phase correction [46]. In contrast to the scalar problem (7), the spectral problem
(9) on the invariant torus A* has a smooth solution for the spin contribution Fe of the
wavefunction, in particular in the vicinity of the focal points (in the orbital variables),
where branching of the scalar part W, (g, %) of the semiclassical wavefunction ¥, (g, k)
oceurs.

3. Semiclassical spectral series of the Schridinger operator

Here we construct semiclassical spectral series for the spectral problem (7)—(8). In section 4
we will find the solution for the spectral problem for the polarization (9), With these two
results we write down in section 5 the general semiciassical formulae. Since operator ﬁs is
invariant with respect to the rotation about the axis Oz, parallel to the field H = (0, 0, Hp),
the classical system possesses a motion integral p,—the projection of the orbital momentum
on the axis 0z. Let us pass to cylindrical coordinates p, z, ¢. The classical Hamiltonian
for operator (8) is
i p: P e

H = Hy(p, por @) = 50+ 50+ 505 +amebp® — o +
where the variables p,, p; and p, are canonically conjugate to the variables p, z, ¢(mod 2x),
P = (pp. p2), wy = égHp/mc is the cyclotron frequency, e = —ep, ey > 0, is the charge
and m is the mass of the electron.

In a Hamiltonian system with a cyclic (angular) variable one can always single out
a special family of closed trajectories—circles, which are stationary motions or relative
equilibrium states of the system in reduced phase space (cf [45]). For each value I ¢ R!
of the ‘momentum’ integral (p, = I), the curve

AE(])={P,0 =0-:Pz='oquo=»{sp= RO(I)’Z=0|(P=Q)0(1):+(PO|I ER} (12)

is a closed trajectory of the Hamiltonian system {4}~(5). It lies on the energy level E = a(I)
of the function H(p, I, g) given by (11).

10K Py (11)

wyl ez me RA(I)
= N = -
== kT 4 13)
The frequency of rotation is
wo(l) = 8H[9p,(0,0, 1, Ro(1), 0) = wy /2 + [ /(mRG(I)). (14)
Here Ro([) is a critical point of the ‘effective” potentiai
I? me? p* _ ez 1)

Vf (p1 Z) = zmpz ‘+‘ 8 (p2 + },lzz)lfz
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in the plane z = 0. Thus Rg(f) is a solution of the equation
m* Wy Rif4 + efmRo =1 (= Ro= Ro(I)). (16)

The frequencies e (I} of radial and wy(7} of axial oscillations of the Hamiltonian system
linearized in a neighbourhood of the equilibrium point p, = p, =0, p = Ry(/), z=01in
reduced phase space Rﬁ * }Rg (p=(p,. P;) and g = (p, 2)) can be easily calculated:

2 1/2
o1} = w, = (@4 + 7' 2UN? o) =, = (;1—;—0:‘&—)) . (17)

Following [34] the quantization condition for the family AT(I) becomes

2

Bl 1 ,
—_— d =E A T o { l==x1,%£2,...v=0,1,2,... j=1,2)
2nh AI(J)P g = (v +2) + ( Vi I )

(18)

The topological characteristics £;(I), j = 1,2 of the complex germ r>(A'!(7)) are related
to the frequencies of rotation wo(/) and of radial and axial oscillations by the following
relation (see [31,32])

B/ 2m = w, (1) /wo(l) i=L2

Notice that for this approximation the arbital quantum number { = {(%) is a large parameter,
1] 3 1. It is connected with the parameter %, # — O by the condition I(#)a — I, where
the orbital momentum /¥ corresponds to the fixed energy EY of the classical system due
to relation EY = ar(J°) (13).

Condition (18) gives us a discrete sequence ¢f quantized values of the orbital momentum
{ = I y,,» (). Then the semiclassical energy levels that correspond, in the limit as # — 0,
to the family of closed trajectories A'(12) near the classical energy B9 = (/%) (see
introduction) are defined by the formula

Epv = Hs'A‘(fJ.Ul.vz(ﬁ) = (v, ).

Using the Taylor series E = E%+AE' 4+ O(&%) in # — 0 and the well known formula
(1/2m)3/0E 35,\1(” pdq = wp(Z)~! [45] it is not difficult to show that the upper formula for

Eiu,,u is equivalent (up to O(&?), & — 0) to the formula for the spectrum in the ‘oscillator
approximation’:

E = Epy () = EP®) +RE]) | (1) +O®?). (19)

Efm(?z) is the energy of the electron on the equilibrium orbit, quantized by (18):

2

0 0] 2
B} () = ol = Ih) = jouhl ~ 5 2o T Lme?, RE(R) (20)
and hE[\) | (r) is the energy of small oscillations with frequencies w;(/), j = 1,2 ((17)

with I = i) near the equilibrium point p = Ry{D), z =0,

¢y
El-vl‘vz

2
@) =Y w0+ 1) v =0,1,2... j=1,2 21
j=1
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The corresponding semiclassical orthonormal eigenfunctions are (cf [31, 32]):

Jm{@ (D (Y
(22h Rg(UR)2" i, lyg )12

Ve, . (g, 7)) = expfilp}

- Ro(lh
x { expl—mey (o — Ro(1)/20)H, (\/mwl (r)—’i—%)
z
xcxp{-—mwg(l)zzz/ﬂz}H ( mow (I)n———) } (22)
" RV5 3 | P
Here H,, are the Hermite polynomials and {(z)h — I (as i — 0), where £ = a(I*) is
the given energy level of the classical system.

4. The polarization equation (spint correction)

The matrix of polarization (10) for the family A'(7) is a matrix with constant coefficients.
Using expressions (12), (14) and (16} we cbtain

eg eof
Ml = —e { Hy o+ e 23
e = 50 ( ot zmcRgu)) 7 23)

where o3 is the Pauli matrix, Since the differentiation operator along the trajectory A'(J)
is d/de| a1 = wo(I)3/3p, the spectral problem (9) takes the form

. 2 2y eof _
(—lwu(l)a—ga- + T (Ho +- ——*zmcRgu)) 0‘3) Je=ur fy (24)

1 0
Fole+27) = fr (@) 03=(0 _1).
Obviously, its solution is given by the following formula:
filp, 1) = &y, f=2lvg ="(L0) v ="10,1)

£0 eof
= Ik k=0 y e
e = 85 (Ho + o ) + o ELE. Q)

5. Semiclassical spectral series of the Pauli operator with spin—orbit interaction

Without loss of generality (see below) we can assume & = 0. The series of semiclassical
eigenvalues of the original problem (1)-(2) is given by

2
1]
Epy = Eq(iR) +n R + 1 LAY €0 72
s @) = Eall) ¥ ;w (e 2)_I_?I‘;‘ths ( ot 2me R3(IR) O
t=0,%1,%2,,... w=0,1,2,... { ==xL (26)

The sequence of semiclassical eigenfunctions ¥y, ,,.+ (0, ¢, z) corresponding to E v, v, ¢ ()
(according to (6)) has the following form:

‘I,l,w,b‘z.i,'(pv @, Z:h) =Y lpEg,ul,uz(Q!h) (27)

(see Wg, .1 (g, )} in (22} and v, in (25)). The case k # O implies only a renumeration of the
energy levels (26) with respect to the orbital quantum number &2 Ej y, v, + (B) > Ep yy 0y, (),
{/ =1+ k. Actually, by the definition of rotation frequency: wo(f) = 9H/81 sy =
dE,(1)/91, the spin correction Awg(l)|;=mk, k % 0 to formula (26) means that the equality

Eo g (B) + Reg(IR)k = Epgp,uy i () + O@%)
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holds up to OF2). The corresponding renumeration / +> ! + k in the wavefunctions (27)
influences the term ¢? > &+ only. It does not affect the final result up to O(),
because, for [ > &, expli(! + k)] ~ exp(ilp).

o, Semiclassical spectral sexies in the weak magnetic field approximation

6.1. The Schridinger operator

Let us choose the ratio (ag/az)* = &, as a criterion of smaliness of magnetic fields, where
ay = (chfeoHo)/?, ap = h*fmed. The parameter &, = HZ(H jom?el) is efficiently
small up to values of the magnetic field Hy of order 10° G. For this case let us find the
approximate value for the solution Ry(f) of equation (16} as £,, — 0, considering I = I#,
f # 0. The actual parameter g, of the expansion is

13 Hoh\
qw=£w[6=( 53)«1
cm eo
We have
[+.=]
Ro(f =1r) = apl® ) riql. (28)

i=0

In particular, ry’ = 1, r{’ = _EIE’ ry = %. After substituting (28) into (13), (17) and (19)
we obtain the semiclassical energy levels for the electron’s motion along the closed phase
curves A'(7) (12) in the weak magnetic field approximation Hg — 0, in the form of the
foliowing expansion in power series of ¢y,:

ey
Ernn () = thonl + — Z(; CP (v, vz, Dgi, + OG), (29
_f=

wyp is the classical frequency of the electron’s motion in a Coulomb field: wy = meg/nf’.
The first four coefficients of expansion (29) look as follows:

Cy = —3 + (i + D/ + 72+ 3/

C¥ =143 /7 (va+ D)/81L + T(vy + 3)/811]

C¥ = —& —33./7 (v + 3)/128)| — 73(v, + 1)/128))

CY¥ = 5 + 324,/ (v + 3)/1024[f 4 735(v; + §)/1024]1]. (30)

When £, = 0 and y = 1, assuming # = |{] + v; + vo + 1 (n is the main quantum number
[t]), we get the exact spectrum of the electron in a hydrogen atom up to o).

6.2. The spin correction

Substituting the radius expansion (28) and (25} we get the following formula for the spin

correction

thwgy + ;‘hegm
2 4c215h°

huf = EY = (1+ 3gu — 32 + O@2)). GD
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7. Semiclassical spectral series in the strong magnetic field approximation

7.1, The Schridinger operator

Let us consider the magnetic field to be so strong that the Larmour radius ay = (cfi/eq Hp)!/?
is much less than the Bohr electron radius ap = ﬁzfmeg {1]. Condition ay <« az is
efficiently executed for values of the field starting with Hy ~ 4.7 x (0° G. The actual
dimensionless parameter of this expansion (as { # 0) is:

gs = es@lN 7 = QU ayfag = [emed /(B Hn ]2 « 1.

From (16) the soluton Rg([l), determining the equilibrium radius of the electron orbit in
the plane z = 0, can be expanded in the following way:

w 3
Ro(I =1R) = ap /20|y _ riqi. (32)
=
The first five coefficients are r§ = 1, rf = -1, 1§ = -4, r§ = -1, r} = L. After

substituting (32) into (13), (17) and (19), the semiclassical energy levels, corresponding to
the electron’s motion along the closed phase curves A' (1) (12) in the strong magnetic field
{Hp — o0) approximation, are obtained in the form of the following expansion:

w -
Epuwm®) =hog y_ CH(v, v, Def* + O@Y). (33)
j=0

The first six coefficients of this expansion are:

CFvi, v, 1) = C; (v, o, DA IH Jj=0,1,...,5 (34)
Co=vi+{+1N/2+% Cr =P+ h

Cz = =20l + (v + 3)/2 Cs =3/F(v2 + 3)/2
Ca=—1]+11(n + 1)/8 Cs = 21./7(v2 + §)/8.

If we identify the sum of the spectral quantum numbers vi -+ ({ -+ }{[)/2 with the number
N of a rather high (¥ 3> 1) Landau level [1] then, for y = 1, formula (33) gives us the
exact spectrum of a non-relativistic electron in a homogeneous magnetic field for 5 = 0,

7.2. The spin correction

As in the previous section, using (32) and (25) we obtain the spin correction Eg in the form
of the following expression:
fhwy egnﬁéml 15,2 , 35,3 4
1 {(143gs+ Fg5+ Fg:+ 0D ). (35)
2 ( 4r/2m2CSRII] 2R A T

hug = Ef =

8. Discussion of the resulis

Our formulae for the semiclassical spectral series of the Schrodinger operator for A'(J)
when Hy = 0, ¥ # 1 pass into the corresponding spectral series for the quantum AKP
[33]. Let us compare the obtained formulae for the semiclassical spectral series of the
Schrédinger operator (8), with the results of other papers in the limiting cases of strong and
weak magnetic fields when ¥ = 1 (Zeeman effect).
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(1) Strong field (Hy — ©00). If we use formulae (33) and (34), and take into account
only the first three expansion coefficients, we obtain for » =1

o)) k=i + D)
QDT FT @l

v, m=012.. &l > 1k =+ D72 (36)

The quantum numbers v, vz = 0,1,2... enumerate the modes of radial (along p} and
axial (along z) oscillations of the wavepacket ¥, v, in a neighbourhood of the equilibrivm
circle p = Ro(!) that lies in the plane z = 0; ! is the orbital quantum number. This number
determines the level of excitation of the hydrogen atom due to the quick rotation of the
electron in the plane transversal to the field Hp. If we identify the sum of the spectral
quantum numbers v; and k; with the number A of a rather high (N > 1) Landau leve]
[1], N = vy + &, then (36) gives us the exact spectrum of a non-relativistic charge in a
homogeneous magnetic field for e = 0. For gg # 0, the spectral series complements the
results obtained by the adiabatic method in [10] when [ = 0. Nonetheless, it is interesting
to mention that taking into account the two former expansioa coefficients in (33), for v; = n
the semiclassical spectrum (36} coincides with the energy spectrum from [10] up to O(es),
es— 0, n=0,1,2,...; N is the quantum number that appears in the adiabatic method of
‘separation of variables’.

(ii) Weak field (Hy — 0). For this case the majority of results obtained by perturbation
theory methods is related to calculating lowly-perturbed states of hydrogen atoms (see,
e.g., [5-8] and references therein). To calculate highly-perturbed states considered in the
semiclassical complex WKB approximation with perturbation theory and its modifications,
one meets the problem of constructing the oscillation functions in the zero approximation.
It is especially interesting that the coefficients of the semiclassical spectra expansion (30),
coincide with the coefficients of the perturbation theory series for energy (cf [6]) up to terms
of order HS’ inclusive if they are extrapolated to the domain of large quantum numbers
N >» 1. N =141 is the main quantum number for the extreme components of a Coulomb
multiplet with zero radial quantum number r, = 0, m = %{. Here the coincidence is exact
in the zero and first orders of the field, and approximate with accuracy up to 2% in the
terms of order HZ, Hf, HE.

For &, = 0, assuming n = || + v; + v + 1, » the main quantum number, we obtain
the exact spectrum of a hydrogen atom from formula (29),

Egonm(h) = hoy [(vl k4 1)+
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